Bayesian models for multiple outcomes nested in domains.
نویسندگان
چکیده
We consider the problem of estimating the effect of exposure on multiple continuous outcomes, when the outcomes are measured on different scales and are nested within multiple outcome classes, or "domains." Our Bayesian model extends the linear mixed models approach to allow the exposure effect to differ across domains and across outcomes within domains. Our model can be parameterized to allow shrinkage of the effects within the different levels of nesting, or to allow fixed domain-specific effects with no shrinkage. Our model also allows covariate effects to differ across outcomes and domains. Our methodology is applied to data on prenatal methylmercury exposure and multiple outcomes in four domains measured at 9 years of age on children enrolled in the Seychelles Child Development Study. We use three different priors and found that our main conclusions were not sensitive to the choice of prior. Simulation studies examine the model performance under alternative scenarios. Our results demonstrate that a sizeable increase in power is possible.
منابع مشابه
Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملLatent factor regression models for grouped outcomes.
We consider regression models for multiple correlated outcomes, where the outcomes are nested in domains. We show that random effect models for this nested situation fit into a standard factor model framework, which leads us to view the modeling options as a spectrum between parsimonious random effect multiple outcomes models and more general continuous latent factor models. We introduce a set ...
متن کاملBayesian Optimum Design Criterion for Multi Models Discrimination
The problem of obtaining the optimum design, which is able to discriminate between several rival models has been considered in this paper. We give an optimality-criterion, using a Bayesian approach. This is an extension of the Bayesian KL-optimality to more than two models. A modification is made to deal with nested models. The proposed Bayesian optimality criterion is a weighted average, where...
متن کاملThe analysis of multiple ties in longitudinal egocentric network data: A case study on bidirectional relationships between trust and drug use
We extend multi-level models to examine single egocentric network ties to the joint analysis of paired dynamic ties. Two analytic challenges are addressed. First, inference needs to account for multiple layers of nesting: ties are nested within pairs, pairs are nested within time points, and time points are nested within egos. Second, the focus is on the relationship between two dynamic ties; s...
متن کاملMultiple membership multiple classification (MMMC) models
In the social and other sciences many data are collected with a known but complex underlying structure. Over the past two decades there has been an increase in the use of multilevel modelling techniques that account for nested data structures. Often however the underlying data structures are more complex and cannot be fitted into a nested structure. First, there are cross-classified models wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 65 4 شماره
صفحات -
تاریخ انتشار 2009